A signal subspace approach for modeling the hemodynamic response function in fMRI.
نویسندگان
چکیده
Many fMRI analysis methods use a model for the hemodynamic response function (HRF). Common models of the HRF, such as the Gaussian or Gamma functions, have parameters that are usually selected a priori by the data analyst. A new method is presented that characterizes the HRF over a wide range of parameters via three basis signals derived using principal component analysis (PCA). Covering the HRF variability, these three basis signals together with the stimulation pattern define signal subspaces which are applicable to both linear and nonlinear modeling and identification of the HRF and for various activation detection strategies. Analysis of simulated fMRI data using the proposed signal subspace showed increased detection sensitivity compared to the case of using a previously proposed trigonometric subspace. The methodology was also applied to activation detection in both event-related and block design experimental fMRI data using both linear and nonlinear modeling of the HRF. The activated regions were consistent with previous studies, indicating the ability of the proposed approach in detecting brain activation without a priori assumptions about the shape parameters of the HRF. The utility of the proposed basis functions in identifying the HRF is demonstrated by estimating the HRF in different activated regions.
منابع مشابه
Evaluation of Hemodynamic Response Function in Vision and Motor Brain Regions for the Young and Elderly Adults
Introduction: Prior studies comparing Hemodynamic Response Function (HRF) in the young and elderly adults based on fMRI data have reported inconsistent findings for brain vision and motor regions in healthy aging. It is shown that the averaging method employed in all previous works has caused this inconsistency. The averaging is so sensitive to outliers and noise. However, fMRI data are o...
متن کاملLocally Estimated Hemodynamic Response Function and Activation Detection Sensitivity in Heroin-Cue Reactivity Study
Introduction: A fixed hemodynamic response function (HRF) is commonly used for functional magnetic resonance imaging (fMRI) analysis. However, HRF may vary from region to region and subject to subject. We investigated the effect of locally estimated HRF (in functionally homogenous parcels) on activation detection sensitivity in a heroin cue reactivity study. Methods: We proposed...
متن کاملPhysiologically Oriented Models of the Hemodynamic Response in Functional MRI
Today, most studies of cognitive processes using functional MRI (fMRI) experiments adopt highly flexible stimulation designs, where not only the activation amount but also the time course of the measured hemodynamic response is of interest. The measured signal only indirectly reflects the underlying neuronal activation, and is understood as being convolved with a hemodynamic modulation function...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance imaging
دوره 21 8 شماره
صفحات -
تاریخ انتشار 2003